The existence of uniquely −G colourable graphs
نویسندگان
چکیده
منابع مشابه
The existence of uniquely -G colourable graphs
Given graphs F and G and a nonnegative integer k, a function n : V(F) ~ {1 . . . . . k} is a G k-colouring of F if no induced copy of G is monochromatic; F is G k-chromatic if F has a G k-colouring but no G (k 1)-colouring. Further, we say F is uniquely G k-colourable if F is G k-chromatic and, up to a permutation of colours, it has only one G k-colouring. Such notions are extensions of the wel...
متن کاملA Note on Uniquely H-colourable Graphs
For a graph H, we compare two notions of uniquely H-colourable graphs, where one is defined via automorphisms, the second by vertex partitions. We prove that the two notions of uniquely H-colourable are not identical for all H, and we give a condition for when they are identical. The condition is related to the first homomorphism theorem from algebra.
متن کاملUniquely circular colourable and uniquely fractional colourable graphs of large girth
Given any rational numbers r ≥ r′ > 2 and an integer g, we prove that there is a graph G of girth at least g, which is uniquely circular r-colourable and uniquely fractional r′-colourable. Moreover, the graph G has maximum degree bounded by a number which depends on r and r′ but does not depend on g.
متن کاملThe property of kk-colourable graphs is uniquely decomposable
An additive hereditary graph property is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. If P1, . . . ,Pn are graph properties, then a (P1, . . . ,Pn)-decomposition of a graph G is a partition E1, . . . , En of E(G) such that G[Ei], the subgraph of G induced by Ei, is in Pi, for i = 1, . . . , n. The sum of the properties P1, . . . ,Pn is the property P1 ⊕ · ·...
متن کاملUniquely Colourable Graphs and the Hardness of Colouring Graphs of Large Girth
For any integer k, we prove the existence of a uniquely k-colourable graph of girth at least g on at most k 12(g+1) vertices whose maximal degree is at most 5k 13. From this we deduce that, unless NP=RP, no polynomial time algorithm for k-Colourability on graphs G of girth g(G) log jGj 13 log k and maximum degree (G) 6k 13 can exist. We also study several related problems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1998
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(97)00022-8